Drive Composer is a start-up and maintenance tool for ABB's common architecture drives. The tool is used to view and set drive parameters, and to monitor and tune process performance.The entry version of Drive Composer provides basic functionality for setting parameters, basic monitoring, taking local control of the drive from the PC, and event logger handling. The entry version is available for free, and can be downloaded from below.Drive Composer pro is the full-fledged commissioning and troubleshooting tool. Order Drive Composer pro through ABB sales channels. Existing license holders can upgrade to latest version of Drive Composer pro by downloading the installation package from below.
Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.
Flash Memory Toolkit 201 Full Version Serial
The NAND type is found mainly in memory cards, USB flash drives, solid-state drives (those produced since 2009), feature phones, smartphones, and similar products, for general storage and transfer of data. NAND or NOR flash memory is also often used to store configuration data in numerous digital products, a task previously made possible by EEPROM or battery-powered static RAM. A key disadvantage of flash memory is that it can endure only a relatively small number of write cycles in a specific block.[2]
Flash memory[3] is used in computers, PDAs, digital audio players, digital cameras, mobile phones, synthesizers, video games, scientific instrumentation, industrial robotics, and medical electronics. Flash memory has fast read access time, but it is not as fast as static RAM or ROM. In portable devices, it is preferred to use flash memory because of its mechanical shock resistance since mechanical drives are more prone to mechanical damage.[4]
Because erase cycles are slow, the large block sizes used in flash memory erasing give it a significant speed advantage over non-flash EEPROM when writing large amounts of data. As of 2019,[update] flash memory costs much less[by how much?] than byte-programmable EEPROM and had become the dominant memory type wherever a system required a significant amount of non-volatile solid-state storage. EEPROMs, however, are still used in applications that require only small amounts of storage, as in serial presence detect.[5][6]
Flash memory packages can use die stacking with through-silicon vias and several dozen layers of 3D TLC NAND cells (per die) simultaneously to achieve capacities of up to 1 tebibyte per package using 16 stacked dies and an integrated flash controller as a separate die inside the package.[7][8][9][10]
Fujio Masuoka, while working for Toshiba, proposed a new type of floating-gate memory that allowed entire sections of memory to be erased quickly and easily, by applying a voltage to a single wire connected to a group of cells.[11] This led to Masuoka's invention of flash memory at Toshiba in 1980.[15][17][18] According to Toshiba, the name "flash" was suggested by Masuoka's colleague, Shōji Ariizumi, because the erasure process of the memory contents reminded him of the flash of a camera.[19] Masuoka and colleagues presented the invention of NOR flash in 1984,[20][21] and then NAND flash at the IEEE 1987 International Electron Devices Meeting (IEDM) held in San Francisco.[22]
Toshiba commercially launched NAND flash memory in 1987.[1][14] Intel Corporation introduced the first commercial NOR type flash chip in 1988.[23] NOR-based flash has long erase and write times, but provides full address and data buses, allowing random access to any memory location. This makes it a suitable replacement for older read-only memory (ROM) chips, which are used to store program code that rarely needs to be updated, such as a computer's BIOS or the firmware of set-top boxes. Its endurance may be from as little as 100 erase cycles for an on-chip flash memory,[24] to a more typical 10,000 or 100,000 erase cycles, up to 1,000,000 erase cycles.[25] NOR-based flash was the basis of early flash-based removable media; CompactFlash was originally based on it, though later cards moved to less expensive NAND flash.
NAND flash has reduced erase and write times, and requires less chip area per cell, thus allowing greater storage density and lower cost per bit than NOR flash. However, the I/O interface of NAND flash does not provide a random-access external address bus. Rather, data must be read on a block-wise basis, with typical block sizes of hundreds to thousands of bits. This makes NAND flash unsuitable as a drop-in replacement for program ROM, since most microprocessors and microcontrollers require byte-level random access. In this regard, NAND flash is similar to other secondary data storage devices, such as hard disks and optical media, and is thus highly suitable for use in mass-storage devices, such as memory cards and solid-state drives (SSD). Flash memory cards and SSDs store data using multiple NAND flash memory chips.
Multi-level cell (MLC) technology stores more than one bit in each memory cell. NEC demonstrated multi-level cell (MLC) technology in 1998, with an 80 Mb flash memory chip storing 2 bits per cell.[27] STMicroelectronics also demonstrated MLC in 2000, with a 64 MB NOR flash memory chip.[28] In 2009, Toshiba and SanDisk introduced NAND flash chips with QLC technology storing 4 bits per cell and holding a capacity of 64 Gbit.[29][30] Samsung Electronics introduced triple-level cell (TLC) technology storing 3-bits per cell, and began mass-producing NAND chips with TLC technology in 2010.[31]
Degradation or wear of the oxides is the reason why flash memory has limited endurance, and data retention goes down (the potential for data loss increases) with increasing degradation, since the oxides lose their electrically insulating characteristics as they degrade. The oxides must insulate against electrons to prevent them from leaking which would cause data loss.
In 1991, NEC researchers including N. Kodama, K. Oyama and Hiroki Shirai described a type of flash memory with a charge trap method.[40] In 1998, Boaz Eitan of Saifun Semiconductors (later acquired by Spansion) patented a flash memory technology named NROM that took advantage of a charge trapping layer to replace the conventional floating gate used in conventional flash memory designs.[41] In 2000, an Advanced Micro Devices (AMD) research team led by Richard M. Fastow, Egyptian engineer Khaled Z. Ahmed and Jordanian engineer Sameer Haddad (who later joined Spansion) demonstrated a charge-trapping mechanism for NOR flash memory cells.[42] CTF was later commercialized by AMD and Fujitsu in 2002.[43] 3D V-NAND (vertical NAND) technology stacks NAND flash memory cells vertically within a chip using 3D charge trap flash (CTP) technology. 3D V-NAND technology was first announced by Toshiba in 2007,[44] and the first device, with 24 layers, was first commercialized by Samsung Electronics in 2013.[45][46]
3D integrated circuit (3D IC) technology stacks integrated circuit (IC) chips vertically into a single 3D IC chip package.[26] Toshiba introduced 3D IC technology to NAND flash memory in April 2007, when they debuted a 16 GB eMMC compliant (product number THGAM0G7D8DBAI6, often abbreviated THGAM on consumer websites) embedded NAND flash memory chip, which was manufactured with eight stacked 2 GB NAND flash chips.[47] In September 2007, Hynix Semiconductor (now SK Hynix) introduced 24-layer 3D IC technology, with a 16 GB flash memory chip that was manufactured with 24 stacked NAND flash chips using a wafer bonding process.[48] Toshiba also used an eight-layer 3D IC for their 32 GB THGBM flash chip in 2008.[49] In 2010, Toshiba used a 16-layer 3D IC for their 128 GB THGBM2 flash chip, which was manufactured with 16 stacked 8 GB chips.[50] In the 2010s, 3D ICs came into widespread commercial use for NAND flash memory in mobile devices.[26]
As of August 2017, microSD cards with a capacity up to 400 GB (400 billion bytes) are available.[51][52] The same year, Samsung combined 3D IC chip stacking with its 3D V-NAND and TLC technologies to manufacture its 512 GB KLUFG8R1EM flash memory chip with eight stacked 64-layer V-NAND chips.[53] In 2019, Samsung produced a 1024 GB flash chip, with eight stacked 96-layer V-NAND chips and with QLC technology.[54][55]
In NOR flash, each cell has one end connected directly to ground, and the other end connected directly to a bit line. This arrangement is called "NOR flash" because it acts like a NOR gate: when one of the word lines (connected to the cell's CG) is brought high, the corresponding storage transistor acts to pull the output bit line low. NOR flash continues to be the technology of choice for embedded applications requiring a discrete non-volatile memory device.[citation needed] The low read latencies characteristic of NOR devices allow for both direct code execution and data storage in a single memory product.[72]
To erase a NOR flash cell (resetting it to the "1" state), a large voltage of the opposite polarity is applied between the CG and source terminal, pulling the electrons off the FG through quantum tunneling. Modern NOR flash memory chips are divided into erase segments (often called blocks or sectors). The erase operation can be performed only on a block-wise basis; all the cells in an erase segment must be erased together. Programming of NOR cells, however, generally can be performed one byte or word at a time.
Compared to NOR flash, replacing single transistors with serial-linked groups adds an extra level of addressing. Whereas NOR flash might address memory by page then word, NAND flash might address it by page, word and bit. Bit-level addressing suits bit-serial applications (such as hard disk emulation), which access only one bit at a time. Execute-in-place applications, on the other hand, require every bit in a word to be accessed simultaneously. This requires word-level addressing. In any case, both bit and word addressing modes are possible with either NOR or NAND flash. 2ff7e9595c
Comments